5.
Train
search
Quick search
code
Show Source
PDF
Github
Dive into cheap deep learning
Table Of Contents
Getting Started
1. Introduction
1.1. time
1.2. 技术
1.3. 隐私
1.4. money
1.5. Data
2. Lightweight
2.1. Lightweight
2.2. SqueezeNet
2.3. MobileNet
2.4. MobileNet-v2
2.5. ShuffleNet
2.6. GhostNet
3. Compression
3.1. 模型压缩
3.2. 参数剪枝(Pruning)
3.3. Knowledge-Distillation
3.4. 量化
4. Write code
4.1. Jupyter
4.2. API
5. Train
5.1. Server
5.2. Active Learning
5.3. Pretrain
5.4. 改进
5.5. 结构
6. Deployment
6.1. 芯片
6.2. Edge
6.3. mobile
6.4. MCU
6.5. AI 中台
Dive into cheap deep learning
Table Of Contents
Getting Started
1. Introduction
1.1. time
1.2. 技术
1.3. 隐私
1.4. money
1.5. Data
2. Lightweight
2.1. Lightweight
2.2. SqueezeNet
2.3. MobileNet
2.4. MobileNet-v2
2.5. ShuffleNet
2.6. GhostNet
3. Compression
3.1. 模型压缩
3.2. 参数剪枝(Pruning)
3.3. Knowledge-Distillation
3.4. 量化
4. Write code
4.1. Jupyter
4.2. API
5. Train
5.1. Server
5.2. Active Learning
5.3. Pretrain
5.4. 改进
5.5. 结构
6. Deployment
6.1. 芯片
6.2. Edge
6.3. mobile
6.4. MCU
6.5. AI 中台
5.
Train
¶
5.1. Server
5.1.1. GPU
5.1.2. DJL
5.2. Active Learning
5.2.1. 标记的数据多少算够?
5.3. Pretrain
5.3.1. 标准模型算法资源库3
5.4. 改进
5.4.1. 策略一:正交化过程
5.4.2. 策略二:确定单一的模型性能评价指标和选择合适的训练集、交叉验证集/测试集
5.4.3. 策略三:调整性能评估指标和交叉验证集/测试集
5.4.4. 策略四:将系统的表现与人类的表现相比,确定提升系统性能的方法
5.5. 结构
5.5.1. 多用卷积核Versatile Filters (NeurIPS 2018)
5.5.2. 乐高卷积核
Previous
4.2. API
Next
5.1. Server