6.
Deployment
search
Quick search
code
Show Source
PDF
Github
Dive into cheap deep learning
Table Of Contents
Getting Started
1. Introduction
1.1. time
1.2. 技术
1.3. 隐私
1.4. money
1.5. Data
2. Lightweight
2.1. Lightweight
2.2. SqueezeNet
2.3. MobileNet
2.4. MobileNet-v2
2.5. ShuffleNet
2.6. GhostNet
3. Compression
3.1. 模型压缩
3.2. 参数剪枝(Pruning)
3.3. Knowledge-Distillation
3.4. 量化
4. Write code
4.1. Jupyter
4.2. API
5. Train
5.1. Server
5.2. Active Learning
5.3. Pretrain
5.4. 改进
5.5. 结构
6. Deployment
6.1. 芯片
6.2. Edge
6.3. mobile
6.4. MCU
6.5. AI 中台
Dive into cheap deep learning
Table Of Contents
Getting Started
1. Introduction
1.1. time
1.2. 技术
1.3. 隐私
1.4. money
1.5. Data
2. Lightweight
2.1. Lightweight
2.2. SqueezeNet
2.3. MobileNet
2.4. MobileNet-v2
2.5. ShuffleNet
2.6. GhostNet
3. Compression
3.1. 模型压缩
3.2. 参数剪枝(Pruning)
3.3. Knowledge-Distillation
3.4. 量化
4. Write code
4.1. Jupyter
4.2. API
5. Train
5.1. Server
5.2. Active Learning
5.3. Pretrain
5.4. 改进
5.5. 结构
6. Deployment
6.1. 芯片
6.2. Edge
6.3. mobile
6.4. MCU
6.5. AI 中台
6.
Deployment
¶
6.1. 芯片
6.2. Edge
6.2.1. 端侧AI的优点9
6.2.2. 算力
6.2.3. 新型算力平台:边缘计算
6.2.4. 端计算端
6.2.5. 算力网络
6.2.6. 硬件:Jetson Nano7
6.2.7. 软件:KubeEdge4
6.2.8. 边缘智能6
6.2.9. 挑战
6.2.10. USB
6.3. mobile
6.4. MCU
6.5. AI 中台
6.5.1. 智能化需求
6.5.2. 中台
6.5.3. 实例
6.5.4. 未来
Previous
5.5. 结构
Next
6.1. 芯片