2. Lightweightnavigate_next 2.6. GhostNet
Quick search
code
Show Source
PDF Github
Dive into cheap deep learning
Table Of Contents
  • Getting Started
  • 1. Introduction
    • 1.1. time
    • 1.2. 技术
    • 1.3. 隐私
    • 1.4. money
    • 1.5. Data
  • 2. Lightweight
    • 2.1. Lightweight
    • 2.2. SqueezeNet
    • 2.3. MobileNet
    • 2.4. MobileNet-v2
    • 2.5. ShuffleNet
    • 2.6. GhostNet
  • 3. Compression
    • 3.1. 模型压缩
    • 3.2. 参数剪枝(Pruning)
    • 3.3. Knowledge-Distillation
    • 3.4. 量化
  • 4. Write code
    • 4.1. Jupyter
    • 4.2. API
  • 5. Train
    • 5.1. Server
    • 5.2. Active Learning
    • 5.3. Pretrain
    • 5.4. 改进
    • 5.5. 结构
  • 6. Deployment
    • 6.1. 芯片
    • 6.2. Edge
    • 6.3. mobile
    • 6.4. MCU
    • 6.5. AI 中台
Dive into cheap deep learning
Table Of Contents
  • Getting Started
  • 1. Introduction
    • 1.1. time
    • 1.2. 技术
    • 1.3. 隐私
    • 1.4. money
    • 1.5. Data
  • 2. Lightweight
    • 2.1. Lightweight
    • 2.2. SqueezeNet
    • 2.3. MobileNet
    • 2.4. MobileNet-v2
    • 2.5. ShuffleNet
    • 2.6. GhostNet
  • 3. Compression
    • 3.1. 模型压缩
    • 3.2. 参数剪枝(Pruning)
    • 3.3. Knowledge-Distillation
    • 3.4. 量化
  • 4. Write code
    • 4.1. Jupyter
    • 4.2. API
  • 5. Train
    • 5.1. Server
    • 5.2. Active Learning
    • 5.3. Pretrain
    • 5.4. 改进
    • 5.5. 结构
  • 6. Deployment
    • 6.1. 芯片
    • 6.2. Edge
    • 6.3. mobile
    • 6.4. MCU
    • 6.5. AI 中台

2.6. GhostNet¶

GhostNet: More Features from Cheap Operations

30:00[1]

https://github.com/huawei-noah/ghostnet

https://www.infoq.cn/article/CEA4ByG6XykGlDeT6bVo

[1]:https://www.bilibili.com/video/BV1Yt4y197Sd?from=search&seid=16685409903707063286

Previous
2.5. ShuffleNet
Next
3. Compression